Acidosis
Acid-Base Made Easy

Corey M. Slovis, M.D.
Vanderbilt University School of Medicine
Metro Nashville Fire Department
Nashville International Airport

The 3 BMP Rules

1) Check the Numbers
 What lab values are abnormal

2) Calculate the Anion Gap
 \[\text{Na}^+ - (\text{HCO}_3^- + \text{Cl}^-) \]

3) Apply the Rule of 15
 \[\text{HCO}_3^- + 15 \] should equal the:
 - pCO\(_2\)
 - last two numbers of pH

Check the Numbers

- Look at BMP for abnormalities
- Hyponatremia, Hyperkalemia, Acidosis?
Anion Gap

- The gap is the Positives minus the Negatives
- The gap is $\text{Na}^+ - [\text{Cl}^- + \text{HCO}_3^-]$
- The gap should be about 8-12 (± 2)
- The gap should always be less than 15

Elevated Anion Gap
$(\text{Na}^+ - [\text{Cl}^- + \text{HCO}_3^-]) \geq 15$

- Methanol (M)
- Uremia (U)
- DKA and AKA (D)
- Paraldehyde/Paracetamol (P)
- INH and Iron (I)
- Lactic Acidosis (L)
- Ethylene Glycol (E)
- Salicylates, Solvents (S)

Normal Gap Acidosis
(Low Bicarb but A.G. is NOT Elevated)

- Hyperventilation (compensation) (H)
- Acids, Addison’s, Carbonic Anhydrase Inhibitors (A)
- RTA (R)
- Diarrhea (D)
- Ureteral Diversion, Ureterosigmoidostomy (U)
- Pancreatic Fistula, Pancreatic Drainage (P)

Always check the Anion Gap
Even if the BMP looks normal!!
Respiratory Alkalosis

Experts in Acid-base can tell if there is Compensation vs. a Second Primary Process

Compensation is Always the Opposite

Acidosis Alkalosis

Metabolic Respiratory

Respiratory Compensation in Metabolic Acidosis

Henderson-Hasselbalch Equation

\[[H^+] = 24 \frac{[pCO_2]}{[HCO_3^-]} \]
Rule of 15

\[\text{HCO}_3^- + 15 \]

\[\text{HCO}_3^- + 15 = \text{pCO}_2 \pm 2 \]
\[\text{HCO}_3^- + 15 = \text{pH} \pm .02 \]

If Rule of 15 satisfied, you have a:
Metabolic Acidosis plus a 2° Respiratory Alkalosis

The Rule of 15 is also called the should be rule because it tells what the pCO\(_2\) and pH should be if there is appropriate respiratory compensation.

Rule of 15

\[\text{HCO}_3^- + 15 = \text{pCO}_2 \pm 2 \text{ and last 2 digits of pH} \]

As HCO\(_3^-\) falls

\[\downarrow \]

\[\text{HCO}_3^- + 15 \]

\[\text{Should equal new pCO}_2 \]

If NOT followed = Another Primary process

Rule of 15

\[\text{HCO}_3^- + 15 = \text{pCO}_2 \]

• Establishes a new set point
• Tells you what pCO\(_2\) value is compensatory
• If followed = Pure Compensation
• If followed = No Second Process

The Rule of 15 tell you the pCO\(_2\) and pH if a pure wide gap metabolic acidosis with secondary respiratory compensation exists (a 2° Respiratory Alkalosis)

Respiratory Compensation in Metabolic Acidosis

- HCO_3^- pH pCO_2
- As HCO_3^- falls, pCO_2 should equal new pCO_2

Rule of 15

$\text{HCO}_3^- + 15 = \text{pCO}_2$ ± 2 and last 2 digits of pH

- As HCO_3^- falls, pCO_2 should equal new pCO_2

Example: Rule of 15

$\text{HCO}_3^- + 15 = \text{pCO}_2$

- If Rule of 15 is followed you have:
 - A Metabolic Acidosis (wide or normal gap) with an appropriate ...
 - Secondary Respiratory Alkalosis

Rule of 15 Followed

$\text{HCO}_3^- + 15 = \text{pCO}_2$

- HCO_3^- plus 15
 - pCO_2 “too high”
 - 1º Respiratory Acidosis
 - Secondary Respiratory Alkalosis
 - pCO_2 “too low”
 - 1º Respiratory Alkalosis

Rule of 15 Not Followed

$\text{HCO}_3^- + 15 \neq \text{pCO}_2$

- HCO_3^- plus 15
 - pCO_2 “too high”
 - 1º Respiratory Acidosis
 - Secondary Respiratory Alkalosis
 - pCO_2 “too low”
 - 1º Respiratory Alkalosis
Rule of 15 Not Followed

\[\text{HCO}_3^- + 15 \triangleq \text{pCO}_2 \]

- pCO\(_2\) "too high"
 - 1° Respiratory Acidosis
- Secondary Respiratory Alkalosis
- pCO\(_2\) "too low"
 - 1° Respiratory Alkalosis

If you don’t have an arterial blood gas (ABG) you can use just the venous pH (VBG)

Venous pH

- Very close to Arterial unless in Shock
- 0.02 – 0.03 in 99% of patients
- 7.40 vs 7.37 – 7.38
- Great in DKA and AKA
- ABGs only needed for Arterial pCO\(_2\)

Venous pH

\[\text{VpH} = 0.01 – 0.03 \text{ of Art pH} \]

ABGs

- On Ventilator
- Seriously Ill
- In Shock
- Severe Lung Disease
- Cardiac Arrest

Venous pH

- Very close to Arterial unless in Shock
- 0.02 – 0.03 in 99% of patients
- 7.40 vs 7.37 – 7.38
- Great in DKA and AKA
- ABGs only needed for Arterial pCO\(_2\)
Case #2

\[
\begin{array}{c|c|c}
140 & 100 & \text{pH} = \,? \\
5.0 & 10 & \text{pCO}_2 = \,? \\
\end{array}
\]

- What are the 3 BMP Rules

Case #3

\[
\begin{array}{c|c|c}
140 & 100 & \text{pH} = 7.35 \\
5.0 & 20 & \text{pCO}_2 = 35 \\
\end{array}
\]

\[+15 = 35\]

\[VpH = 7.33\]

Case #4

\[
\begin{array}{c|c|c|c|c}
135 & 100 & \text{BUN} = 30 & \text{pH} = 7.30 \\
6.0 & 15 & \text{GLU} = 600 & \text{pCO}_2 = 30 \\
\end{array}
\]

- Is this pure DKA?
- Is this “just a WGMA + a 2° Respiratory Alkalosis?”
- Is this patient septic also?
- Or could this patient be tiring?

(V pH 7.28)
The Rule of 15 tells you the pCO2 and pH if a pure wide gap metabolic acidosis with secondary respiratory compensation exists (a 2° Respiratory Alkalosis).

\[\text{HCO}_3^- + 15 = \text{pCO}_2 \pm 2 \text{ and last 2 digits of pH} \]

As HCO3 falls,

- HCO3 - 15
- pCO2

Should equal new pCO2

Case #4

<table>
<thead>
<tr>
<th>HCO3</th>
<th>pCO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+15</td>
<td>15</td>
</tr>
</tbody>
</table>

\[\text{HCO}_3^- = 15 \quad \text{pH} = 7.30 \quad \text{pCO}_2 = 30 \]

Case #5

<table>
<thead>
<tr>
<th>HCO3</th>
<th>pCO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+15</td>
<td>15</td>
</tr>
</tbody>
</table>

\[\text{HCO}_3^- = 15 \quad \text{pH} = 7.30 \quad \text{pCO}_2 = 30 \]

Is this mild DKA?

(V pH 7.28)
Case #5

<table>
<thead>
<tr>
<th>BUN</th>
<th>GLU</th>
<th>pH</th>
<th>pCO₂</th>
<th>pO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>600</td>
<td>7.30</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Check the numbers.

Calculate the A.G.

- () = 10 = No A.G. = HARDUP

Case #5

<table>
<thead>
<tr>
<th>HCO₃</th>
<th>pH</th>
<th>pCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>7.30</td>
<td>30</td>
</tr>
</tbody>
</table>

Too high

2° Respiratory Alkalosis only

Too Low

Case #5

<table>
<thead>
<tr>
<th>BUN</th>
<th>GLU</th>
<th>pH</th>
<th>pCO₂</th>
<th>pO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>105</td>
<td>7.30</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Normal Gap Acidosis
(Low Bicarb but A.G. is NOT Elevated)

H Hyperventilation (compensation)
A Acids, Addison’s, Carbonic Anhydrase Inhibitors
R RTA
D Diarrhea
U Ureteral Diversion, Ureterosigmoidostomy
P Pancreatic Fistula, Pancreatic Drainage

Can’t be mild DKA, no A.G. = no Ketoacidosis

Case #6

An alcoholic comes in with altered mental status and very ill appearing. Someone says he was drinking “windex for car windshields”.

Is this methanol?

Toxic Alcohols

- Ethanol \rightarrow Acetaldehyde
- Isopropyl \rightarrow Acetone
- Methanol \rightarrow Formic Acid
- Ethylene Glycol \rightarrow Oxalic Acid
The most common errors in alcoholics are made by doctors and nurses who assume "He's just drunk."

Ten Commandments of Emergency Medicine

• Assume the Worst

• Always err in a way the patient will suffer the least

Methanol

- CH₃OH; MW 32; 3.2 mg% of methanol = 1 mosm
- Formic acid and formaldehyde once metabolized
- Methanol is non-toxic; breakdown products are not
- Diagnosis: Profound acidosis, blindness, retinal edema, pancreatitis
Ethylene Glycol

HO-CH2-CH2-OH MW 62 each 6.2 mg% = 1 mosm

- Becomes oxalic acid once metabolized
- An antifreeze agent
- A sweetener for wine
- 40 - 60 deaths a year in USA
- Has no odor
- **Profound acidosis** from oxalic acid
- **Renal failure** from oxalate crystals in kidney

Isopropyl Alcohol

CH3-CHOH-CH3 MW 60 each 6.0 mg = 1 mosm

- Becomes acetone once metabolized
- Usually benign
- Twice as drunk, twice as sick, twice as long
- **Ketosis without acidosis**
- No anion gap
- Hemorrhagic gastritis, hypotension

Case #6

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>5</td>
</tr>
</tbody>
</table>

- BUN = 20 pH = 7.00
- GLU = 100 pCO₂ = 20
- pO₂ = 110

- Acid Base Diagnosis
- Is this methanol?
- Is bicarbonate indicated?

(V pH 6.98)

Case #6

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>5</td>
</tr>
</tbody>
</table>

- BUN = 20 pH = 7.00
- GLU = 100 pCO₂ = 20
- pO₂ = 110

Check the numbers.

Calculate the A.G.

\[- (+) = 35 = \uparrow = \text{WGMA}\]
Case #6

\[\text{HCO}_3 = 5 \quad \text{pH} = 7.00 \quad \text{pCO}_2 = 20 \]

Too high

Too low

2° Respiratory Alkalosis only

Corollary to the Rule of 15

As the Bicarbonate falls below 10 and approaches 5, the expected pCO$_2$ is not HCO$_3$ + 15.

It is:

\[\text{HCO}_3 = 15 \quad (12-15) \]

Corollary to the Rule of 15

As the HCO$_3$ falls below 10 and approaches 5:

\[\text{HCO}_3 \neq 15 = \text{pCO}_2 \]

Corollary to the Rule of 15

HCO$_3$ PCO$_2$ pH
24 40 7.40
20 35 7.35
15 30 7.30
10 25 7.25
5 15 7.12
2.5 15 6.88

1° Respiratory Acidosis

2° Respiratory Alkalosis
Case #6

<table>
<thead>
<tr>
<th>130</th>
<th>90</th>
<th>BUN = 20</th>
<th>pH = 7.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>5</td>
<td>GLU = 100</td>
<td>pCO₂ = 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PO₂ = 110</td>
</tr>
</tbody>
</table>

Wide Gap Metabolic Acidosis
Respiratory Acidosis

To check for Methanol and Ethylene Glycol:

1) Get levels
2) Check osmolar gap
3) Treat based on history and/or physical and/or lab NOT just levels and/or gap

If they have already metabolized the toxin, they can be acidotic with low or no detectable serum levels or osmolar gap!

Osmolar Gap
For Unexplained Wide Gap Acidosis or History of Ingestion of Toxic Alcohol

- Calculate Osmolarity
- \(\text{Osmolarity} = \left(\frac{\text{Na} \times 2 + \text{GLU}}{20} + \frac{\text{BUN}}{3} + \frac{\text{ETOH}}{4} \right) \)
- Get measured osmolarity from lab
- Measured – Calculated should = 10
- Elevated Osmolar Gap = Methanol or E.G.

Treatment of Methanol and Ethylene Glycol

- Secure ABCs
- Consider NGT
- Reverse Acidosis
- Block Metabolism
- Enhance Elimination

Treatment of Methanol and Ethylene Glycol

- Secure ABCs
 - Hydrate as needed
- Consider NGT
 - Provide glucose and usually start ETOH cocktail
 - Always give thiamine

- Reverse Acidosis
 - 1 amp of bicarbonate for each 0.1 pH unit below 7.35
 - 1 meq/kg over 5-10 min will raise pH by 0.1-0.15
 - Get pH to 7.35-7.40
- Block Metabolism
 - Block Alcohol Dehydrogenes
 - Begin Fomepizole (4-MP)
 - 15 mg/kg IV then 10 mg/kg IV Q 12 H
 - Block Creation of Formic or Oxalic Acid
Treatment of Methanol and Ethylene Gylcol

- Enhance Elimination
 - Hemodialysis for Symptomatic, acidotic patients or those with levels > 25-50 mg%.
 - HD until levels below 25 mg%.
 - May delay HD once patient stable and Fomipazole on board.
 - HD emergently for:
 - visual changes, severe acidosis, coma.

Is Bicarbonate Indicated?

Bicarbonate: Yes and No

Yes: in bicarbonate consuming overdoses like ASA, Methanol, Ethylene Glycol
Replenish the consumed bicarbonate

No: for diseases that cause acidosis like DKA, Sepsis and Lactic Acidosis
Correct the underlying disease

Using Bicarbonate

Each amp raises pH by 0.1 if given in under 3-5 minutes

1 meq/kg raises pH by 0.1 – 0.15

Case #7

A 23 yo man presents with altered mental status. He is agitated, febrile and hyperventilating.

<table>
<thead>
<tr>
<th>BUN</th>
<th>GLU</th>
<th>pH</th>
<th>pCO₂</th>
<th>pO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>70</td>
<td>7.32</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

- What is the differential of AMS?
- Acid Base Diagnosis?
- Immediate Rule Out?

(V pH 7.30)

Status Seizures

- Vital Signs
- Toxic–Metabolic
- Structural
- Infectious
- Epilepsy

AMS

- Vital Signs
- Toxic–Metabolic
- Structural
- Infectious
- Psychiatric
Case #7

Check the numbers.

Calculate the A.G.

\[-(\text{ + }) = 30 = \uparrow = \text{MUDPILES}\]

If the patient’s pCO₂ is lower than it “should be” via the Rule of 15, or V pH is higher than it should be, then the patient is hyperventilating more than expected from compensation.

This is also a Primary Respiratory Alkalosis.

Whenever you have a WGMA and a 1º Respiratory Alkalosis always immediately consider and rule out:

ASPIRIN
SEPSIS

Aspirin

- The great imitator
- AMS, Seizures
- Anxiety, Tachypnea, Tachycardia
- Hypoglycemia
- Febrile, Meningitis
- DIC, MOSF
Aspirin Kills

- Acidosis
- Hypoglycemia
- Hypokalemia
- Dehydration – Fever
- Edema: Pulmonary and CNS

Treating Aspirin

- Acidosis: Bicarbonate
- Hypoglycemia: Glucose
- Hypokalemia: KCL
- Dehydration: Volume
- Edema: Judicious Volume

Treating Aspirin

D5 + 3 Amps HCO3 + 40 KCL
200cc/hr

- Keep urine non acidotic at 100 cc +/- hr
- If not: - more volume if flow too low
 - more bicarb if pH too low

Very Acidotic Aspirin Overdoses

If you intubate an Aspirin Overdose they will get a respiratory acidosis if you do not ventilate at very high rates and volumes

- ETT = DOA if not careful
- Call Tox, Use Bicarb, Dialyze
A 19 yo Jeet Kun Do Sensei is found down in his dojo.

- Is there pure wide gap metabolic acidosis?
- Any new Rule of 5 to use here?

PE: Decorticate, Papilledema

ECG: Diffuse ST and T waves changes

Check the numbers.

Calculate the A.G.

\[- (+ 15) = 25 = \uparrow = \text{MUDPILES} \]

\[
\begin{align*}
\text{HCO}_3 & = 15 \\
pH & = 7.30 \\
pCO_2 & = 30 \\
pO_2 & = 98 \\
\text{O}_2 \text{ sat} & = 100\%
\end{align*}
\]

\[
\begin{align*}
\text{HCO}_3 & = 15 \\
pH & = 7.30 \\
pCO_2 & = 30 \\
pO_2 & = 98 \\
\text{O}_2 \text{ sat} & = 100\%
\end{align*}
\]

Too high

2º Respiratory Alkalosis only

Too Low

Trust No One
Believe Nothing
Pulse Oximetry Basics

- Pulses light at about 400 cycles/sec
- Can compare arterial to venous saturation
- Accuracy is ± 2% when sats above 70 - 80%
- Accurate to levels of pO₂ of 50 (80% sat)
- Compares arterial and venous absorbance at both wavelengths

Carbon Monoxide but
100% Saturated, 75% O₂, 25% CO

Co-Oximetry

- Measures true saturation's
- Measures at 4 wavelengths
- Specifically evaluates
 - Saturated Hgb (O₂)
 - Desaturated Hgb (CO₂)
 - Carbon Monoxide (CO)
 - Methemoglobin (Me)
AMS of Unknown Cause
5 ABG Values

- pO₂
- pCO₂
- pH
- Measured O₂ Sat
- CO Level

O₂ Saturation

- O₂ Sat Monitor Calculated
- O₂ Sat by ABG Calculated
- O₂ Sat by Co Oximetry Direct Measure

ABG, O₂ Sat, pO₂, % Sat

The Only True Measurement of O₂ Saturation is via Co Oximetry.

Case # 9
A German Shepard Activates 911 due to her masters AMS.

140 | 100
3.2 | 10

pH = 7.20
pCO₂ = 30
pO₂ = 80

• Diagnosis?

Check the numbers.

Calculate the A.G.

− (+) = 30 = ↑ = MUDPILES
Case # 9

<table>
<thead>
<tr>
<th>HCO₃</th>
<th>pH</th>
<th>pCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7.20</td>
<td>30</td>
</tr>
</tbody>
</table>

1° Respiratory Acidosis
pCO₂ = 40
Too high

10
+15

Name That Acidosis

- Blindness
- Urine Findings
- Abdominal Pain
- Funny Breath
- Hypoglycemia
- Status Seizures

- Methanol
- Ethylene Glycol, DKA, RF
- Methanol, Iron, DKA, Sepsis, ASA
- Uremia, DKA, Aspirin (Methyl Salycilate)
- ASA, Sepsis, Methanol, E.G.
- INH, Lactic Acidosis

Case # 9

<table>
<thead>
<tr>
<th>PO₂</th>
<th>pH</th>
<th>pCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>7.20</td>
<td>30</td>
</tr>
</tbody>
</table>

+15

Wide Gap Metabolic Acidosis
Primary Respiratory Acidosis

Name That Acidosis

- Hypoxia
- Hypocalcemia
- Papilledema
- “In a snow storm”
- pH < 6.8

- Lactic Acidosis
- Ethylene Glycol
- Methanol
- Methanol
- INH, ME, EG

SUMMARY

1) Check the Numbers
What lab values are abnormal

2) Calculate the Anion Gap
Na⁺ - (HCO₃⁻ + Cl⁻)

3) Apply the Rule of 15
HCO₃⁻ + 15 should equal the:
- pCO₂
- last two numbers of pH

The 3 BMP Rules
Elevated Anion Gap
\[
(Na^+ - [Cl^- + HCO_3^-] \geq 15)
\]

- Methanol
- Uremia
- DKA and AKA
- Paraldehyde
- INH and Iron
- Lactic Acidosis
- Ethylene Glycol
- Salicylates, Solvents

Always check the Anion Gap
Even if the BMP looks normal!!

Rule of 15
\[
HCO_3^- + 15 = pCO_2 \pm 2 \text{ and last 2 digits of pH}
\]

As HCO_3 falls
\[
\text{pCO}_2
\]
\[
\text{Should equal new pCO}_2
\]

Corollary to the Rule of 15

As the Bicarbonate falls below 10 and approaches 5 the expected pCO_2 is not HCO_3 + 15.

It is:
\[
HCO_3^- = 15 \ (12-15)
\]

Whenever you have a WGMA and a 1° Respiratory Alkalosis always immediately consider and rule out:

ASPIRIN
SEPSIS
The Delta Gap

- The Rule of 15 looks for “hidden” respiratory processes
- The Delta Gap looks for “hidden” metabolic processes in wide gap acidosis.
- Is there a metabolic alkalosis or a second acidosis (hyperchloremic metabolic acidosis) in addition to elevated gap acidosis?

The Delta Gap (1:1)

The bicarbonate should go down by the same amount (± 4)

As the anion gap goes up

The fall in ΔHCO_3^- should mirror the rise in AG (Δ AG)
Wide Gap Metabolic Acidosis Plus a Concomitant Metabolic Alkalosis

- HCO₃: 20
- A.G.: 30

Wide Gap Metabolic Acidosis Plus a Second Metabolic Acidosis (non-gap acidosis)

- HCO₃: 10
- A.G.: 20

There are 3 possibilities with the Delta Gap:

1) The Δ HCO₃ = the Δ AG (± 4):
 - thus: no hidden process
2) The HCO₃ is higher than it “should be”:
 - $=$ Metabolic Alkalosis
3) The HCO₃ is lower than it “should be”:
 - $=$ Metabolic Acidosis
 - (1° Hyperchloremic Metabolic Acidosis)

Case #11

```
<table>
<thead>
<tr>
<th>pH</th>
<th>pCO₂</th>
<th>pO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.38</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>
```

- Diagnosis?

Case #11

```
<table>
<thead>
<tr>
<th>pH</th>
<th>pCO₂</th>
<th>pO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.38</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>
```

- Check the numbers.
- Calculate the A.G.

$- (\text{AG}) = 30 = \uparrow = \text{MUDPILES}$
Case #11

<table>
<thead>
<tr>
<th>HCO₃ = 20</th>
<th>pH = 7.38</th>
<th>pCO₂ = 30</th>
</tr>
</thead>
</table>

1° Respiratory Alkalosis

pCO₂ = 40

2° Respiratory Alkalosis only

Too Low

\[\text{HCO}_₃ \text{ should fall by } -15 \text{ but it hasn’t. HCO}_₃ \text{ is higher than it “should be.”} \]

Metabolic Alkalosis

Case #11

<table>
<thead>
<tr>
<th>142</th>
<th>92</th>
<th>pH = 7.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>20</td>
<td>pCO₂ = 30</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>pO₂ = 60</td>
</tr>
</tbody>
</table>

Wide Gap Metabolic Acidosis
Primary Respiratory Alkalosis
Metabolic Alkalosis

VanderbiltEM.com